Joint Matrix Factorization: A Novel Approach for Recommender System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A Novel Non-Negative Matrix Factorization Method for Recommender Systems

Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scal...

متن کامل

MSGD: A Novel Matrix Factorization Approach for Large-scale Collaborative Filtering Recommender Systems on GPUs

Real-time accurate recommendation of large-scale recommender systems is a challenging task. Matrix factorization (MF), as one of the most accurate and scalable techniques to predict missing ratings, has become popular in the collaborative filtering (CF) community. Currently, stochastic gradient descent (SGD) is one of the most famous approaches for MF. However, it is non-trivial to parallelize ...

متن کامل

An Adaptive Matrix Factorization Approach for Personalized Recommender Systems

Given a set $U$ of users and a set of items $I$, a dataset of recommendations can be viewed as a sparse rectangular matrix $A$ of size $|U|\times |I|$ such that $a_{u,i}$ contains the rating the user $u$ assigns to item $i$, $a_{u,i}=?$ if the user $u$ has not rated the item $i$. The goal of a recommender system is to predict replacements to the missing observations $?$ in $A$ in order to make ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3044046